RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2016-19] B.A./B.Sc. FOURTH SEMESTER (January – June) 2018 Mid-Semester Examination, March 2018

Date : 14/03/2018 Time : 2 pm - 4 pm **CHEMISTRY** (Honours)

Paper : IV

Full Marks : 50

[16 marks]

[3]

[2]

[1×4]

[Use a separate Answer Book <u>for each group]</u>

[Attempt <u>one question from each unit]</u>

<u>Group – A</u>

<u>Unit - I</u>

- 1. a) Why is alternating current used in the measurement of conductivities of ions in solution? [1] b) Derive the relation $u = \frac{\lambda_1}{\lambda_1}$ where u is the ionic mobility λ_1 is molar conductivity and z is the
 - b) Derive the relation $u_i = \frac{\lambda_1}{z_i F}$ where u_i is the ionic mobility, λ_i is molar conductivity and z_i is the

magnitude of the charge number on the ith ion and F is the Faraday constant.

- c) State Kohlrausch's law of independent migration of ions. How is it used to determine the equivalent conductance of acetic acid? [2]
- d) Draw and explain the conductometric titration curve for the titration of AgNO₃ with KCl at two different temperatures.
 [2]
- 2. a) Explain why conductivity is increased when very high electric field is applied.
 - b) Molar conductances at infinite dilution of HCl, NaCl and CH₃COONa are 426.2, 126.5 and 91.0 S cm² mol⁻¹. A conductance cell filled with 0.01M KCl has a resistance of 257.3 ohms at 25°C. The same cell filled with 0.2M acetic acid has a resistance of 508.6 ohms. Calculate the degree of dissociation of the acid. (Specific conductance of 0.01 M KCl at 25° C = 1.41×10^{-3} S cm⁻¹). [3]
 - c) Discuss the key features of determining the transport number of an ion via moving boundary method showing the calculations involved. [3]

<u>Unit - II</u>

3. a) The S.E for Harmonic Oscillator has the form $\frac{d^2\psi}{dx^2} + \left(\frac{2mE}{\hbar^2} - b^2x^2\right)\psi = 0$ $\left[b = \frac{2\pi\nu m}{\hbar}\right]$

Justify that $\psi(x) = C[exp(-\alpha x^2)]$ is a probable solution for this dynamical system, provided

$$\mathbf{E} = \frac{1}{2} \boldsymbol{\omega} \boldsymbol{\hbar} \quad [\boldsymbol{\omega} = 2\pi \mathbf{v}].$$
^[4]

b) State True or False.

- i) $E_0 = \frac{1}{2}hv$ is the consequency of energy-time uncertainty relation.
- ii) $\langle E \rangle = 2 \langle v \rangle$ for Harmonic Osc for v = 0, only.
- iii) $\psi(x) = f(x) + f(-x)$ is an odd function.
- iv) Rotation energy gives the idea of r_{eq} of a diatomic molecule.
- 4. a) Rotation of a mass in a ring (circular) problem can be solved like a particle in a 1D well. Consider $\psi(r, \phi) = R(r)\Phi(\phi)$ and then find out the separated variable equation in terms of ϕ and

r. Given, S.E. in the polar form be $-\frac{\hbar^2}{2m}\left\{\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r}\frac{\partial \psi}{\partial r} + \frac{1}{r^2}\frac{\partial^2 \psi}{\partial \phi^2}\right\} = E\psi$. What is the boundary [4]

condition applied here?

- b) Answer the following (any two) :
 - For Harmonic Oscillator wavefunctions, $\langle \psi_v(x) | \psi_{v+1}(x) \rangle = 0$. Explain. i)

For v=2, $\psi_2 = (C_0 + C_2 x^2) e^{\frac{-\alpha x^2}{2}}$ and the recursion relation is $C_{n+2} = \frac{2\alpha(n-v)}{(n+1)(n+2)}C_n$. ii) show that the normalized function for v = 2 is $\psi_2 = (\alpha - 4\pi)^{\frac{1}{4}} (2\alpha x^2 - 1)e^{-\alpha x^2/2}$.

Consider a particle of mass, m, travels on a circle of radius, r, in the 'xy' plane and PE is iii) constant. Show that the S.E in the polar form becomes, $-\frac{\hbar^2}{2m}\left\{\frac{\partial^2\psi}{\partial r^2} + \frac{1}{r}\frac{\partial\psi}{dr} + \frac{1}{r^2}\frac{\partial^2\psi}{\partial\phi^2}\right\} = E\psi.$

Unit - III

a) How will you prepare superpure (impurity $< 10^{-9}$ %) grade geemanium? (Give the outlines steps 5. with balanced reactions) [4]

- b) Explain the following :
 - Polymeric SiO₄ and PO₄ tetrahedra are very common than SO₄ polymeric tetrahedra. i)
 - the O O bond length in O₂ (121 pm) and O₂F₂ (122 pm) is almost same but shorter than ii) the O – O bond in H_2O_2 (148 pm).

6.	a)	Compare and contrast the chemistry of trimethylamine and trisilayl amine with respect to their	
		(i) structure and (ii) reaction with an acid (HCl).	[4]

- Tetravalent lead is unstable while tetravalent tin is stable. Explain with evidence. [3] b)
- What is hydrosilation reaction? c)

Unit - IV

- 7. Discuss the structure of borazine. Give two chemical reactions to show its greater reactivity than a) benzene. [2+2]Comment on the non existence of nitrogen (v) chloride and bismuth (v) chloride. [3] b) Tetracoordinated boron compounds are always tetrahedral and never square planar ---Explain. [2] c) a) PCl₅ is well known but PH₅ cannot be prepared —Explain. [2] 8. b) Compare the hydrolytic behaviour of the trichlorides of nitrogen, phosphorous and bismuth. [3] Discribe the reaction of diborane with (i) ammonia and (ii) dimethy amine [2] c)
 - AlF₃ has a very much higher melting point than AlCl₃—Explain. d)

Group – C [16 marks]

Unit - V

Identify suitable synthons for the following molecules and also show the retro synthesis. 9. a) [2×2]

[2]

[2×2]

[2+3]

[2]

b) Draw the outline for the synthesis of following 3°alcohol; with proper reagents.

c) Identify the products in the following reactions with proper reason.

10. a) Identify the suitable synthons for the following molecules and also show the retro synthesis. $[2\times 2]$

b) Complete the following conversion via sulphur ylide.

$$R \rightarrow 0 \rightarrow R \rightarrow 0 R$$

c) For the following reaction, sequence of addition of reagents is very important to get ketone as major product. —Explain. [2]

$$R \xrightarrow{O} OEt + R'MgBr \rightarrow R \xrightarrow{O} R'$$

<u>Unit - VI</u>

- 11. a) When optically active (s) 2 methyl 1, 2 butanediol is subjected to pinacol rearrangement. a racemic product obtained. —Explain.
 - b) Write down the product(s) for the following reaction with proper mechanism. $[2\times 2]$

$$\overset{\text{O}}{\longrightarrow} \overset{\text{Cl}}{\longrightarrow} \overset{\text{NaOMe}}{\longrightarrow} \overset{\text{NaOMe}}{\longrightarrow} \overset{\text{Me}}{\longrightarrow} \overset{\text{O}}{\longrightarrow} \overset{\text{CH}_3}{\longrightarrow} \overset{\text{mcPBA}}{\longrightarrow}$$

c) Convert ester group to amine group for the following compound using Curtius rearrangement (mechanism for Curtins rearrangement only).

$$MeO - O - CO_2Et \longrightarrow MeO - O - NH_2$$

12. a) Write down the products for the following reaction with proper mechanism.

b) Write down the product for the following reactions (no mechanism require).

$$\underbrace{\overset{O}{\longrightarrow}}_{\text{NH}_2\text{OH}} A \xrightarrow{\text{i) } H^+}_{\text{ii) } H_2\text{O}} B$$

 \sim

[2]

[2]

[2]

[2]

[2]

[2]

[2×2]

c) Justify the formation of the product.

